17 research outputs found

    Machine learning for fast and accurate assessment of earthquake source parameters

    Get PDF
    Erdbeben gehören zu den zerstörerischsten Naturgefahren auf diesem Planeten. Obwohl Erdbeben seit Jahrtausenden dokumentiert sing, bleiben viele Fragen zu Erdbeben unbeantwortet. Eine Frage ist die Vorhersagbarkeit von Brüchen: Inwieweit ist es möglich, die endgültige Größe eines Bebens zu bestimmen, bevor der zugrundeliegende Bruchprozess endet? Diese Frage ist zentral für Frühwarnsysteme. Die bisherigen Forschungsergebnisse zur Vorhersagbarkeit von Brüchen sind widersprüchlich. Die Menge an verfügbaren Daten für Erdbebenforschung wächst exponentiell und hat den Tera- bis Petabyte-Bereich erreicht. Während viele klassische Methoden, basierend auf manuellen Datenauswertungen, hier ihre Grenzen erreichen, ermöglichen diese Datenmengen den Einsatz hochparametrischer Modelle und datengetriebener Analysen. Insbesondere ermöglichen sie den Einsatz von maschinellem Lernen und deep learning. Diese Doktorarbeit befasst sich mit der Entwicklung von Methoden des maschinellen Lernens zur Untersuchung zur Erbebenanalyse. Wir untersuchen zuerst die Kalibrierung einer hochpräzisen Magnitudenskala in einem post hoc Scenario. Nachfolgend befassen wir uns mit Echtzeitanalyse von Erdbeben mittels deep learning. Wir präsentieren TEAM, eine Methode zur Frühwarnung. Auf TEAM aufbauend entwickeln wir TEAM-LM zur Echtzeitschätzung von Lokation und Magnitude eines Erdbebens. Im letzten Schritt untersuchen wir die Vorhersagbarkeit von Brüchen mittels TEAM-LM anhand eines Datensatzes von teleseismischen P-Wellen-Ankünften. Dieser Analyse stellen wir eine Untersuchung von Quellfunktionen großer Erdbeben gegenüber. Unsere Untersuchung zeigt, dass die Brüche großer Beben erst vorhersagbar sind, nachdem die Hälfte des Bebens vergangen ist. Selbst dann können weitere Subbrüche nicht vorhergesagt werden. Nichtsdestotrotz zeigen die hier entwickelten Methoden, dass deep learning die Echtzeitanalyse von Erdbeben wesentlich verbessert.Earthquakes are among the largest and most destructive natural hazards known to humankind. While records of earthquakes date back millennia, many questions about their nature remain open. One question is termed rupture predictability: to what extent is it possible to foresee the final size of an earthquake while it is still ongoing? This question is integral to earthquake early warning systems. Still, research on this question so far has reached contradictory conclusions. The amount of data available for earthquake research has grown exponentially during the last decades reaching now tera- to petabyte scale. This wealth of data, while making manual inspection infeasible, allows for data-driven analysis and complex models with high numbers of parameters, including machine and deep learning techniques. In seismology, deep learning already led to considerable improvements upon previous methods for many analysis tasks, but the application is still in its infancy. In this thesis, we develop machine learning methods for the study of rupture predictability and earthquake early warning. We first study the calibration of a high-confidence magnitude scale in a post hoc scenario. Subsequently, we focus on real-time estimation models based on deep learning and build the TEAM model for early warning. Based on TEAM, we develop TEAM-LM, a model for real-time location and magnitude estimation. In the last step, we use TEAM-LM to study rupture predictability. We complement this analysis with results obtained from a deep learning model based on moment rate functions. Our analysis shows that earthquake ruptures are not predictable early on, but only after their peak moment release, after approximately half of their duration. Even then, potential further asperities can not be foreseen. While this thesis finds no rupture predictability, the methods developed within this work demonstrate how deep learning methods make a high-quality real-time assessment of earthquakes practically feasible

    NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language

    Full text link
    Rule-based models are attractive for various tasks because they inherently lead to interpretable and explainable decisions and can easily incorporate prior knowledge. However, such systems are difficult to apply to problems involving natural language, due to its linguistic variability. In contrast, neural models can cope very well with ambiguity by learning distributed representations of words and their composition from data, but lead to models that are difficult to interpret. In this paper, we describe a model combining neural networks with logic programming in a novel manner for solving multi-hop reasoning tasks over natural language. Specifically, we propose to use a Prolog prover which we extend to utilize a similarity function over pretrained sentence encoders. We fine-tune the representations for the similarity function via backpropagation. This leads to a system that can apply rule-based reasoning to natural language, and induce domain-specific rules from training data. We evaluate the proposed system on two different question answering tasks, showing that it outperforms two baselines -- BIDAF (Seo et al., 2016a) and FAST QA (Weissenborn et al., 2017b) on a subset of the WikiHop corpus and achieves competitive results on the MedHop data set (Welbl et al., 2017).Comment: ACL 201

    PickBlue: Seismic phase picking for ocean bottom seismometers with deep learning

    Full text link
    Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data machine learning methods have already found widespread adoption. However, deep learning approaches are not yet commonly applied to ocean bottom data due to a lack of appropriate training data and models. Here, we compiled an extensive and labeled ocean bottom seismometer dataset from 15 deployments in different tectonic settings, comprising ~90,000 P and ~63,000 S manual picks from 13,190 events and 355 stations. We propose PickBlue, an adaptation ot the two popular deep learning networks EQTransformer and PhaseNet. PickBlue joint processes three seismometer recordings in conjunction with a hydrophone component and is trained with the waveforms in the new database. The performance is enhanced by employing transfer learning, where initial weights are derived from models trained with land earthquake data. PickBlue significantly outperforms neural networks trained with land stations and models trained without hydrophone data. The model achieves a mean absolute deviation (MAD) of 0.05 s for P waves and 0.12 s for S waves. We integrate our dataset and trained models into SeisBench to enable an easy and direct application in future deployments

    Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers

    Get PDF
    Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches, achieving human-like performance under certain circumstances. However, as studies differ in the datasets and evaluation tasks, it is unclear how the different approaches compare to each other. Furthermore, there are no systematic studies about model performance in cross-domain scenarios, that is, when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark. We compare six previously published deep learning models on eight data sets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with a small advantage for EQTransformer on teleseismic data. Furthermore, we conduct a cross-domain study, analyzing model performance on data sets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but models trained on regional data do not transfer well to teleseismic data. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily evaluate new models or performance on new data sets. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models

    Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction

    Get PDF
    The end-Permian mass extinction occurred alongside a large swath of environmental changes that are often invoked as extinction mechanisms, even when a direct link is lacking. One way to elucidate the cause(s) of a mass extinction is to investigate extinction selectivity, as it can reveal critical information on organismic traits as key determinants of extinction and survival. Here we show that machine learning algorithms, specifically gradient boosted decision trees, can be used to identify determinants of extinction as well as to predict extinction risk. To understand which factors led to the end-Permian mass extinction during an extreme global warming event, we quantified the ecological selectivity of marine extinctions in the well-studied South China region. We find that extinction selectivity varies between different groups of organisms and that a synergy of multiple environmental stressors best explains the overall end-Permian extinction selectivity pattern. Extinction risk was greater for genera that had a low species richness, narrow bathymetric ranges limited to deep-water habitats, a stationary mode of life, a siliceous skeleton, or, less critically, calcitic skeletons. These selective losses directly link the extinctions to the environmental effects of rapid injections of carbon dioxide into the ocean-atmosphere system, specifically the combined effects of expanded oxygen minimum zones, rapid warming, and potentially ocean acidification

    A Probabilistic View on Rupture Predictability: All Earthquakes Evolve Similarly

    Get PDF
    Ruptures of the largest earthquakes can last between a few seconds and several minutes. An early assessment of the final earthquake size is essential for early warning systems. However, it is still unclear when in the rupture history this final size can be predicted. Here we introduce a probabilistic view of rupture evolution - how likely is the event to become large - allowing for a clear and well-founded answer with implications for earthquake physics and early warning. We apply our approach to real time magnitude estimation based on either moment rate functions or broadband teleseismic P arrivals. In both cases, we find strong and principled evidence against early rupture predictability because differentiation between differently sized ruptures only occurs once half of the rupture has been observed. Even then, it is impossible to foresee future asperities. Our results hint toward a universal initiation behavior for small and large ruptures
    corecore